МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет» (ВятГУ) г. Киров

Утверждаю Директор/Декан <u>Репкин Д. А.</u>

Номер регистрации РПД_3-09.03.02.02_2020_110486 Актуализировано: 25.02.2021

Рабочая программа дисциплины Проектирование и разработка киберфизических систем

-	наименование дисциплины
Квалификация	Бакалавр
выпускника	
Направление	09.03.02
подготовки	шифр
	Информационные системы и технологии
	наименование
Направленность	3-09.03.02.02
(профиль)	шифр
	Информационные системы и технологии управления
	технологическими процессами в промышленности
	наименование
Формы обучения	Заочная, Очная
	наименование
Кафедра-	Кафедра систем автоматизации управления (ОРУ)
разработчик	наименование
Выпускающая	Кафедра систем автоматизации управления (ОРУ)
,	наименование

Сведения о разработчиках рабочей программы дисциплины

Нижегородова Маргарита Владимировна
ФИО
Шмакова Наталья Александровна
ФИО

Цели и задачи дисциплины

Цель дисциплины	Знакомство с общей концепцией и принципами построения киберфизических систем (КФС), как новой технологической платформы формирования универсальной информационно-управляющей среды, объединяющей ключевые тренды развития сквозных информационных и информационно-прикладных технологий, и предназначенной для решения широкого класса задач промышленной автоматизации и управления.					
Задачи	– изучение информационно-технологической концепции интеграции					
дисциплины	перспективных информационных технологий и вычислительных ресурсов обработки информации в физические сущности любого					
	вида,					
	– изучение принципов концепции информационно-технологической					
	интеграции, в форме технологических платформенных решений для киберфизических систем (КФС),					
	– технологии киберфизических систем для решения классов практических задач;					
	– разносторонне формулировать и объяснять особенности					
	практического применения концепции и технологии					
	киберфизических систем для решения различных прикладных задач;					
	навыки:					
	– сформировать навыки практического применения технологий КФС					
	для решения отдельных классов типовых задач,					
	– сформировать навыки разработки математико-программного обеспечения моделирования сложных систем управления.					

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Компетенция ПК-6

способен участвовать в анализе, проектировании, разработке, выборе и сопровождении аппаратного обеспечения вычислительных, управляющих и сенсорных устройств информационно-управляющих систем

Знает	Умеет	Владеет
методы обеспечения	применять аналитические и	навыками моделирования,
соответствия технических	численные методы для	анализа и выбора
характеристик аппаратного	расчета электрических	электронных устройств
обеспеченияя	характеристик устройств	автоматизированных
автоматизированных	автоматизированных	информационно-
информационно-	информационно-	управляющих систем;
управляющих систем	управляющих систем;	навыками расчета,
характеристикам	выбирать аппаратные и	проектирования и выбора
наблюдаемых и	программные компоненты	компонентов
управляемых процессов;	информационно-	информационно-
основные методики расчета	управляющих систем	управляющих систем
и проектирования модулей		
информационно-		
управляющих систем		

Компетенция ПК-7

способен анализировать модели процессов в информационно-управляющих системах и формировать на их основе алгоритмическое и аппаратное обеспечение

	·	
Знает	Умеет	Владеет
физические основы	применять известные	навыками использования
процессов контроля и	аппаратные средства и	аппаратных и программных
управления в	вычислительные алгоритмы	средств, предназначенных
автоматизированных	для решения задач	для обеспечения обработки
информационно-	управления	и хранения данных в
управляющих системах	автоматизированных	автоматизированных
	информационно-	информационно-
	управляющих системах	управляющих системах

Компетенция ПК-8

способен использовать ин	нструментальное программное	обеспечение различных фаз
жизненного цикла информа	ационно-управляющих систем	
Знает	Умеет	Владеет
способы хранения,	формировать программное	навыками использования

Знает	Умеет	Владеет
способы хранения,	формировать программное	навыками использования
обработки и представления	обеспечение	актуальных
данных в распределенных	автоматизированных	инструментальных средств
автоматизированных	информационно-	для разработки
информационно-	управляющих систем	программного обеспечения
управляющих системах		информационно-
		управляющих систем

Структура дисциплины Тематический план

Nº п/п	Наименование разделов дисциплины	Шифр формируемых компетенций
1	Концепция и интеллектуализация	ПК-6, ПК-7, ПК-8
	киберфизических систем	
2	Подготовка и прохождение промежуточной	ПК-6, ПК-7, ПК-8
	аттестации	

Формы промежуточной аттестации

Зачет	8 семестр (Очная форма обучения)
	7 семестр (Заочная форма обучения)
Экзамен	Не предусмотрен (Очная форма обучения)
	Не предусмотрен (Заочная форма обучения)
Курсовая работа	Не предусмотрена (Очная форма обучения)
	Не предусмотрена (Заочная форма обучения)
Курсовой проект	Не предусмотрена (Очная форма обучения)
	Не предусмотрена (Заочная форма обучения)

Трудоемкость дисциплины

Форма	Курсы	Семестры	Общий (трудое	объем мкость)	Контактная			диторная контак ся с преподавате		Canage and a 1100	Курсовая	•	Sussmou
обучения	Курсы	Семестры	Часов	3ET	работа, час	Всего	Лекции	Семинарские, практические занятия	Лабораторные занятия	Самостоятельная работа, час	работа (проект), семестр		Экзамен, семестр
Очная форма обучения	4	8	144	4	96	60	20	20	20	48		8	
Заочная форма обучения	3, 4	6, 7	144	4	18.5	18	6	6	6	125.5		7	

Содержание дисциплины

Очная форма обучения

Код		Трудоемкость, академических			
занятия	Наименование тем занятии				
		часов			
систем»	онцепция и интеллектуализация киберфизических	140.00			
Лекции	12 2 2	T			
Л1.1	Понятия и определения киберфизических систем	2.00			
Л1.2	Развитие концепции киберфизических систем на принципах синергетической интеграции	2.00			
Л1.3	Системный подход к формированию концепции развития КФС	2.00			
Л1.4	Реализация концепции киберфизических систем как интегрированной технологической платформы	2.00			
Л1.5	Управление в условиях неопределенности: неэффективности классической теории управления.	2.00			
Л1.6	Управление, основанное на знаниях: принципы ситуационного управления	2.00			
Л1.7	Формализация знаний: концептуальные структуры и модели как основа управления в условиях неопределенности	4.00			
Л1.8	Нейро-сетевые модели и базы знаний: принципы извлечения, накопления и применения знаний в киберфизических системах	4.00			
Семинары,	практические занятия				
Π1.1	Рассмотрение принципов работы контроллеров и актуаторов	4.00			
П1.2	Принципы проектирования электронных систем на базе микроконтроллеров и быстрого прототипирования простых киберфизических систем	6.00			
П1.3	Средства моделирования киберфизических систем	6.00			
П1.4	Принципы проектирования 3D- объектов	4.00			
Лабораторн	ые занятия				
P1.1	Принципы проектирования электронных систем на базе микроконтроллеров и быстрого прототипирования простых киберфизических систем	4.00			
P1.2	Использование средств моделирования киберфизических систем	6.00			
P1.3	Разработка простейших нейросетевых баз знаний для задач управления	4.00			
P1.4	Программирование простейших нейросетевых баз знаний для задач управления	6.00			
Самостоятел	льная работа				
C1.1	Самостоятельная работа студентов этап 1	22.50			
C1.2	Самостоятельная работа студентов этап 2	22.00			

Контактная внеаудиторная работа				
КВР1.1 Контактная внеаудиторная работа 35.5				
Раздел 2 «Г	4.00			
32.1	Подготовка к сдаче зачета	3.50		
KBP2.1	Сдача зачета	0.50		
итого	144.00			

Заочная форма обучения

Код		Трудоемкость,			
занятия	наименование тем занятии				
занятия		часов			
Раздел 1 «Ко систем»	140.00				
Лекции					
Л1.1	Понятия и определения киберфизических систем	0.50			
Л1.2	Развитие концепции киберфизических систем на	0.50			
	принципах синергетической интеграции	0.50			
Л1.3	Системный подход к формированию концепции развития КФС	0.50			
Л1.4	Реализация концепции киберфизических систем как интегрированной технологической платформы	0.50			
Л1.5	Управление в условиях неопределенности: неэффективности классической теории управления.	0.50			
Л1.6	Управление, основанное на знаниях: принципы ситуационного управления	0.50			
Л1.7	Формализация знаний: концептуальные структуры и модели как основа управления в условиях неопределенности	1.00			
Л1.8	Нейро-сетевые модели и базы знаний: принципы извлечения, накопления и применения знаний в киберфизических системах	2.00			
Семинары, практические занятия					
П1.1	Рассмотрение принципов работы контроллеров и актуаторов	1.00			
П1.2	Принципы проектирования электронных систем на базе микроконтроллеров и быстрого прототипирования простых киберфизических систем	2.00			
П1.3	Средства моделирования киберфизических систем	2.00			
П1.4	Принципы проектирования 3D- объектов	1.00			
Лабораторные занятия					
P1.1	Принципы проектирования электронных систем на базе микроконтроллеров и быстрого прототипирования простых киберфизических систем	1.00			
P1.2	Использование средств моделирования киберфизических систем	2.00			
P1.3	Разработка простейших нейросетевых баз знаний для	1.00			

	задач управления			
P1.4	Программирование простейших нейросетевых баз	2.00		
	знаний для задач управления	2.00		
Самостоятельная работа				
C1.1	Самостоятельная работа студентов этап 1 34.00			
C1.2	Самостоятельная работа студентов этап 2	88.00		
Контактная внеаудиторная работа				
KBP1.1	Контактная внеаудиторная работа			
Раздел 2 «Подготовка и прохождение промежуточной аттестации» 4.00				
32.1	Подготовка к сдаче зачета	3.50		
KBP2.1	Сдача зачета	0.50		
ИТОГО		144.00		

Содержание дисциплины данной рабочей программы используется при обучении по индивидуальному учебному плану, при ускоренном обучении, при применении дистанционных образовательных технологий и электронном обучении (при наличии).

Методические указания для обучающихся по освоению дисциплины

Успешное освоение дисциплины предполагает активное, творческое участие обучающегося на всех этапах ее освоения путем планомерной, повседневной работы. Обучающийся обязан посещать лекции, семинарские, практические и лабораторные занятия (при их наличии), получать консультации преподавателя и выполнять самостоятельную работу.

Изучение дисциплины следует начинать с проработки настоящей рабочей программы, методических указаний и разработок, указанных в программе, особое внимание уделить целям, задачам, структуре и содержанию дисциплины.

Главной задачей каждой лекции является раскрытие сущности темы и анализ ее основных положений. Тематика лекций определяется настоящей рабочей программой дисциплины.

Лекции — это систематическое устное изложение учебного материала. На них обучающийся получает основной объем информации по каждой конкретной теме. Лекции обычно носят проблемный характер и нацелены на освещение наиболее трудных и дискуссионных вопросов.

Предполагается, что обучающиеся приходят на лекции, предварительно проработав соответствующий учебный материал по источникам, рекомендованным программой. Часто обучающимся трудно разобраться с дискуссионными вопросами, дать однозначный ответ. Преподаватель, сравнивая различные точки зрения, излагает свой взгляд и нацеливает их на дальнейшие исследования и поиск научных решений. После лекции желательно вечером перечитать и закрепить полученную информацию, тогда эффективность ее усвоения значительно возрастает. При работе с конспектом лекции необходимо отметить материал, который вызывает затруднения для понимания, попытаться найти ответы на затруднительные вопросы, используя предлагаемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю.

Целью семинарских занятий является проверка уровня понимания обучающимися вопросов, рассмотренных на лекциях и в учебной литературе.

Целью практических и лабораторных занятий является формирование у обучающихся умений и навыков применения теоретических знаний в реальной практике решения задач; восполнение пробелов в пройденной теоретической части курса.

Семинарские, практические и лабораторные занятия в равной мере направлены на совершенствование индивидуальных навыков решения теоретических и прикладных задач, выработку навыков интеллектуальной работы, а также ведения дискуссий. Для успешного участия в семинарских, практических и лабораторных занятиях обучающемуся следует тщательно подготовиться.

Основной формой подготовки обучающихся к практическим (лабораторным) занятиям является самостоятельная работа с учебно-методическими материалами, научной литературой, статистическими данными и т.п.

Изучив конкретную тему, обучающийся может определить, насколько хорошо он в ней разобрался. Если какие-то моменты остались непонятными, целесообразно составить список вопросов и на занятии задать их преподавателю. Практические (лабораторные) занятия предоставляют обучающемуся возможность творчески раскрыться, проявить инициативу и развить навыки публичного ведения дискуссий и общения.

Самостоятельная работа обучающихся включает в себя выполнение различного рода заданий (изучение учебной и научной литературы, материалов лекций, систематизацию прочитанного материала, подготовку контрольной работы, решение

задач, подготовка докладов, написание рефератов, публикация тезисов, научных статей, подготовка и защита курсовой работы / проекта и другие), которые ориентированы на глубокое усвоение материала изучаемой дисциплины.

Обучающимся рекомендуется систематически отводить время для повторения пройденного материала, проверяя свои знания, умения и навыки.

Внутренняя система оценки качества освоения дисциплины включает входной контроль уровня подготовленности обучающихся, текущий контроль успеваемости, промежуточную аттестацию, направленную на оценивание промежуточных и окончательных результатов обучения по дисциплине (в том числе результатов курсового проектирования (выполнения курсовых работ) при наличии).

При проведении промежуточной аттестации обучающегося учитываются результаты текущего контроля, проводимого в течение освоения дисциплины.

Процедура оценивания результатов освоения дисциплины осуществляется на основе действующих локальных нормативных актов ФГБОУ ВО «Вятский государственный университет», с которыми обучающиеся ознакамливаются на официальном сайте университета www.vyatsu.ru.

Учебно-методическое обеспечение дисциплины, в том числе учебнометодическое обеспечение самостоятельной работы обучающегося по дисциплине

Учебная литература (основная)

- 1) Сафьянников, Н. М. Информационно-измерительные преобразователи киберфизических систем: учебное пособие для вузов / Н. М. Сафьянников, О. И. Буренева, А. Н. Алипов. Санкт-Петербург: Лань, 2020. 236 с. ISBN 978-5-8114-5402-0: Б. ц. URL: https://e.lanbook.com/book/152596 (дата обращения: 15.05.2020). Режим доступа: ЭБС Лань. Текст: электронный.
- 2) Олифер, В. Г. Компьютерные сети. Принципы, технологии, протоколы : учеб. пос. / В. Г. Олифер, Н. А. Олифер. 3-е изд. СПб. : Питер, 2007. 958 с. : ил. Библиогр.: с. 919-922. ISBN 5-469-00504-6 : 201.04 р. Текст : непосредственный.
- 3) Осипов, Геннадий Семенович. Методы искусственного интеллекта: научное издание / Г. С. Осипов. М.: Физматлит, 2011. 295 с.: ил. Библиогр.: с. 288-295. ISBN 978-5-9221-1323-6: 282.48 р. Текст: непосредственный.
- 4) Методы классической и современной теории автоматического управления : учебник: в 5 т. / под ред. К. А. Пупкова, Н. Д. Егупова. 2-е изд., перераб. и доп. М. : Изд-во МГТУ им. Н. Э. Баумана. ISBN 5-7038-2192-4. Текст : непосредственный. Т. 4 : Теория оптимизации систем автоматического управления. 2004. 744 с. : ил. Библиогр.: с. 726-731. ISBN 5-7038-2194-0 : 343.80 р., 371.00 р.
- 5) Пенькова, Т. Г. Модели и методы искусственного интеллекта: учебное пособие / Т. Г. Пенькова, Ю. В. Вайнштейн. Красноярск: СФУ, 2019. 116 с. ISBN 978-5-7638-4043-8: Б. ц. URL: https://e.lanbook.com/book/157579 (дата обращения: 15.05.2020). Режим доступа: ЭБС Лань. Текст: электронный.

Учебная литература (дополнительная)

- 1) Математические методы теории управления. Проблемы устойчивости управляемости и наблюдаемости : [монография] / С. В. Емельянов. Москва : Физматлит, 2013. 200 с. (Теория управления). Библиогр.: с. 193-195. ISBN 978-5-9221-1544-5 : 370.00 р. Текст : непосредственный.
- 2) Редько, Владимир Георгиевич. Эволюция, нейронные сети, интеллект. Модели и концепции эволюционной кибернетики / В. Г. Редько. М. : КомКнига, 2005. 224 с. (Синергетика: от прошлого к будущему). ISBN 5-484-00052-1 : 189.00 р. Текст : непосредственный.
- 3) Редько, В. Г. Эволюционная кибернетика / В. Г. Редько; РАН. М.: Наука, 2001. 156 с. ISBN 5-02-013063-X: 91.00 р. Текст: непосредственный.
- 4) Редько, А. Виртуальное предприятие в постиндустриальном обществе: экономико-математическая модель инновационного предприятия

- агропромышленного комплекса / А. Редько. Москва : Лаборатория книги, 2010. 57 с. ISBN 978–5–905835–63–6 : Б. ц. URL: http://biblioclub.ru/index.php?page=book&id=97431/ (дата обращения: 24.03.2020). Режим доступа: ЭБС Университетская библиотека ONLINE. Текст : электронный.
- 5) Гаврилова, Т. А. Базы знаний интеллектуальных систем : Учеб. / Т. А. Гаврилова, В. Ф. Хорошевский. СПб. : Питер, 2001. 384 с. ISBN 5-272-00071-4 : 95.00 р., 90.00 р. Текст : непосредственный.
- 6) Джонс, М. Тим. Программирование искусственного интеллекта в приложениях / М. Т. Джонс. М. : ДМК пресс, 2004. 312 с. : ил. ISBN 5-94074-275-0 : 170.10 р. Текст : непосредственный.

Учебно-методические издания

- 1) Гордин, Андрей Андреевич. Теория управления : видеолекция: дисциплина "Теория управления" / А. А. Гордин ; ВятГУ, ФМиС, каф. МиМ. Киров : ВятГУ, [2018]. Б. ц. URL: https://online.vyatsu.ru/content/teoriya-upravleniya-9 (дата обращения: 09.01.2018). Режим доступа: Видеолекция ВятГУ. Изображение : видео.
- 2) Протасов, Анатолий Прохорович. Теория автоматического управления: учеб. пособие по курсу "Теория автоматического управления" / А. П. Протасов, В. В. Рычков; ВятГУ, ФАВТ, кафедра ЭПиАПУ. Киров: ВятГУ, 2011. х. Б. ц. URL: https://lib.vyatsu.ru. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3) Методические указания для проведения лабораторных работ по курсу "Теория автоматического управления". Белгород : БелГАУ им.В.Я.Горина, 2020. 28 с. Б. ц. URL: https://e.lanbook.com/book/152084 (дата обращения: 15.05.2020). Режим доступа: ЭБС Лань. Текст : электронный.
- 4) Сырецкий, Г. А. Искусственный интеллект и основы теории интеллектуального управления. 1 : практикум / Г.А. Сырецкий. Новосибирск : Новосибирский государственный технический университет, 2016. 92 с. : ил., табл., схем. Библиогр. в кн. ISBN 978-5-7782-3021-7. ISBN 978-5-7782-3022-4 (Ч. 1) : Б. ц. URL: http://biblioclub.ru/index.php?page=book&id=576318/ (дата обращения: 24.03.2020). Режим доступа: ЭБС Университетская библиотека ONLINE. Текст : электронный.
- 5) Сырецкий, Г. А. Искусственный интеллект и основы теории интеллектуального управления. 2 : практикум / Г.А. Сырецкий. Новосибирск : Новосибирский государственный технический университет, 2016. 92 с. : ил., табл. Библиогр. в кн. ISBN 978-5-7782-3021-7. ISBN 978-5-7782-3208-2 (Ч. 2) : Б. ц. URL: http://biblioclub.ru/index.php?page=book&id=576559/ (дата обращения: 24.03.2020). Режим доступа: ЭБС Университетская библиотека ONLINE. Текст : электронный.

Электронные образовательные ресурсы

- 1) Портал дистанционного обучения ВятГУ [электронный ресурс] / Режим доступа: http://mooc.do-kirov.ru/
- 2) Раздел официального сайта ВятГУ, содержащий описание образовательной программы [электронный ресурс] / Режим доступа: https://www.vyatsu.ru/php/programms/eduPrograms.php?Program ID=3-09.03.02.02
- 3) Личный кабинет студента на официальном сайте ВятГУ [электронный ресурс] / Режим доступа: https://new.vyatsu.ru/account/
- 4) Единое окно доступа к образовательным ресурсам http://window.edu.ru/

Электронные библиотечные системы (ЭБС)

- ЭБС «Научная электронная библиотека eLIBRARY» (http://elibrary.ru/defaultx.asp)
- ЭБС «Издательства Лань» (http://e.lanbook.com/)
- ЭБС «Университетская библиотека online» (www.biblioclub.ru)
- Внутренняя электронно-библиотечная система ВятГУ (http://lib.vyatsu.ru/)
- ЭБС «ЮРАЙТ (https://urait.ru)

Современные профессиональные базы данных и информационные справочные системы

- **FAPAHT**
- КонсультантПлюс
- Техэксперт: Нормы, правила, стандарты
- Pocnateht (https://www1.fips.ru/elektronnye-servisy/informatsionno-poiskovaya-sistema)
- Web of Science® (http://webofscience.com)

Материально-техническое обеспечение дисциплины

Демонстрационное оборудование

Перечень используемого оборудования

МУЛЬТИМЕДИА ПРОЕКТОР CASIO XJ-A141V C ЭКРАНОМ HACTEHHЫМ 180*180CM, ШТАТИВОМ PROFFIX 63-100CM И КАБЕЛЕМ VGA 15.2M

МУЛЬТИМЕДИА ПРОЕКТОР CASIO XJ-A141V C ЭКРАНОМ HACTEHHЫМ PROJECTA ПРОФИ 180*180CM, ШТАТИВОМ PROFFIX 63-100CM И КАБЕЛЕМ VGA 15.2M

НОУТБУК HP 4530s Intel Core i3-2350M/15.6 HD AG LED SVA

Специализированное оборудование

Перечень используемого оборудования

МОНОБЛОК ICL RAY S 922.Мі.5 (БЕЛЫЙ)

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, в том числе лицензионное и свободно распространяемое ПО (включая ПО отечественного производства)

Nº	Наименование ПО	Краткая характеристика назначения ПО
п.п 1	Программная система с модулями для	Программный комплекс для проверки текстов на предмет заимствования из
	обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ»	Интернет-источников, в коллекции диссертация и авторефератов Российской государственной библиотеки (РГБ) и коллекции нормативно-правовой документации LEXPRO
2	Microsoft Office 365 ProPlusEdu ALNG SubsVL MVL AddOn toOPP	Набор веб-сервисов, предоставляющий доступ к различным программам и услугам на основе платформы Microsoft Office, электронной почте бизнес-класса, функционалу для общения и управления документами
3	Office Professional Plus 2016	Пакет приложений для работы с различными типами документов: текстами, электронными таблицами, базами данных, презентациями
4	Windows Professional	Операционная система
5	Kaspersky Endpoint Security для бизнеса	Антивирусное программное обеспечение
6	Справочная правовая система «Консультант Плюс»	Справочно-правовая система по законодательству Российской Федерации
7	Электронный периодический справочник ГАРАНТ Аналитик	Справочно-правовая система по законодательству Российской Федерации
8	Security Essentials (Защитник Windows)	Защита в режиме реального времени от шпионского программного обеспечения, вирусов.
9	МойОфис Стандартный	Набор приложений для работы с документами, почтой, календарями и контактами на компьютерах и веб браузерах
10	Python	Язык программирования
11	Autocad	САПР
12	Arduino IDE	open source среда разработки Arduino
13	Microsoft Robotics Developer Studio	Windows-ориентированная среда для управления роботами и их симуляции

14	Git	распределённая система управления проектами
15	Draw.io	бесплатное ПО для создания онлайн-диаграмм
16	Code Vision AVR Evalution	Среда разработки для 8-битных микроконтроллеров. Evalution - бесплатная версия, с ограничением длины кода в 4Кб. с ограничением ряда возможностей.
17	Blender	профессиональное свободное и открытое программное обеспечение для создания трёхмерной компьютерной графики, включающее в себя средства моделирования, скульптинга, анимации, симуляции, рендеринга, постобработки и монтажа видео со звуком, компоновки с помощью «узлов», а также создания 2D-анимаци
18	UnoArduSim	Эмулятор Arduino
19	IntelliJ IDEA Community Edition	интегрированная среда разработки программного обеспечения для многих языков программирования, в частности Java, JavaScript, Python и др.

Обновленный список программного обеспечения данной рабочей программы находится по адресу: https://www.vyatsu.ru/php/list_it/index.php?op_id=110486